B2.2: Commutative Algebra

Nikolay Nikolov

Hilary term, 2018

All rings in this course will be assumed commutative and containing an identity element. For a ring R we denote by $R[t_1, \ldots, t_k]$ the polynomial ring in indeterminates t_i with coefficients in R. A subset S of R is said to be *multiplicatively closed* if $1 \in S$ and whenever $x, y \in S$ then $xy \in S$.

Zorn's Lemma

A partial order \leq on a set X is a reflexive transitive relation such that $a \leq b$ and $b \leq a$ implies a = b.

A chain C in a partially ordered set X is a subset $C \subseteq X$ which is totally ordered, i.e. for any $x, y \in C$ we have $a \leq b$ or $b \leq a$. The following result is known as Zorn's Lemma. It is equivalent to the Axiom of choice and also to the Well-ordering principle.

Lemma 1 (Zorn's Lemma) Let (X, \leq) be a partially ordered set such that every chain of elements of X has an upper bound in X. Then X has a maximal element.

A typical application of Zorn's lemma is the existence of maximal ideals in any unital ring R: Let X be the set of all ideals of R different from Rordered by inclusion. Note that X is not empty since $\{0\} \in X$. If C is a chain in X we easily check that $\cup C \in X$ and so the condition of the lemma is satisfied. Therefore X has maximal elements, i.e. maximal ideals.

1 Introduction

Commutative algebra has developed under the unfluence of two major subjects: Algebraic Number Theory and Algebraic Geometry.

Recall that an ideal I of a ring R is prime if R/I is a domain, or equivalently whenever the complement $R \setminus I$ is multiplicatively closed.

The main object of study in Algebraic Number theory is the ring of integers \mathcal{O} of a finite extension field K of \mathbb{Q} . The ring \mathcal{O} is an example of a Dedekind domain: all nonzero prime ideals are maximal (in fact of finite index in \mathcal{O}), and moreover every ideal of \mathcal{O} has a unique factorization into a product of prime ideals.

The main object of study of (Affine) Algebraic geometry are the affine algebraic varieties (which we will call *algebraic sets* in this course).

Let F be a field, $k \in \mathbb{N}$ and let $R := k[t_1, \ldots, t_k]$ be the polynomial ring in k variables t_i and let F^k , denote the k-dimensional vector space of row vectors.

Let $Y \subseteq R$ be a collection of polynomials from R and define

$$\mathcal{V}(S) := \{ \mathbf{x} = (x_i) \in F^k \mid f(\mathbf{x}) = 0 \ \forall f \in S \}$$

This is just the subset in F^k of common zeroes for all polynomials in S (it may happen of course that this is the empty set).

It is easy to see that $\mathcal{V}(S) = \mathcal{V}(I)$ where $I = \langle S \rangle$ is the ideal generated by S in R.

Definition 2 A set $U \subseteq F^k$ is an algebraic set if $U = \mathcal{V}(S)$ for some $S \subseteq R$ (equivalently $U = \mathcal{V}(I)$ for some ideal I of R).

We may consider an opposite operation associating an ideal to each subset of F^k .

Definition 3 Let $Z \subseteq F^k$ be any subset. Define

$$\mathcal{I}(Z) := \{ f(t_1, \dots, t_k) \in R \mid f(\mathbf{x}) = 0 \ \forall \mathbf{x} \in Z \}.$$

Thus $\mathcal{I}(Z)$ is the set of polynomials which vanish on all of Z. It is clear that $\mathcal{I}(Z)$ is an ideal of R.

Proposition 4 For ideals $I \subseteq I' \subseteq R$ and subsets $Z \subseteq Z' \subseteq F^k$ we have (1) $\mathcal{V}(\mathcal{I}(Z)) \supseteq Z$, moreover there is equality if Z is an algebraic set. (2) $\mathcal{I}(\mathcal{V}(I)) \supseteq I$, (3) $\mathcal{V}(I) \supseteq \mathcal{V}(I')$, (4) $\mathcal{I}(Z) \supseteq \mathcal{I}(Z')$.

Proof. Exercise.

The above proposition shows that \mathcal{I} and \mathcal{V} are order reversion maps between the set of ideals of R and the algebraic subsets of F^k . Moreover (1) shows that \mathcal{V} is surjective while \mathcal{I} is injective. Understanding the relationship between an algebraic set Z and the ideal $\mathcal{I}(Z)$ is the beginning of algebraic geometry which we will address in Section 4.

2 Noetherian rings and modules

Let R be a ring and let M be an R-module. Recall that M is said to be finitely generated if there exist elements $m_1, \ldots, m_k \in M$ such that $M = \sum_{i=1}^k Rm_i$.

Lemma 5 The following three conditions on M are equivalent.

(a) Any submodule of M is finitely generated.

(b) Any nonempty set of submodules of M has a maximal element under inclusion.

(c) Any ascending chain of submodules $N_1 \leq N_2 \leq N_3 \leq \cdots$ eventually becomes stationary.

Proof. (c) implies (b) is easy.

(b) implies (a): Let N be a submodule of M and let X be the collection of finitely generated submodules of N. X contains $\{0\}$ and so by (b) there is a maximal element $N_0 \in X$. We claim that $N_0 = N$. Otheriwise there is some $x \in N \setminus N_0$ and then $N_0 + Rx$ is a finitely generated submodule of N which is larger than N, contradiction. So $N_0 = N$ is finitely generated.

(a) implies (c): Let $N_1 \leq N_2 \leq \cdots$ be an ascending chain of submodules and let $N := \bigcup_{i=1}^{\infty} N_i$. Then N is a submodule of M which is finitely generated by (a). Suppose N is generated by elements x_1, \ldots, x_n . For each x_i there is some N_{k_i} such that $x_i \in N_{k_i}$. Take $k = \max_i \{k_i\}$. We see that all $x_i \in N_k$ and so $N = N_k$. Therefore the chain becomes stationary at N_k . \Box **Definition 6** An R-module M is said to be Noetherian if it satisfies any of the three equivalent conditions of Lemma 5.

Proposition 7 Let $N \leq M$ be two *R*-modules. Then *M* is Noetherian if and only if both *N* and *M*/*N* are Noetherian.

Proof. Problem sheet 1, Q4. \Box

As a consequence we see that $M^n := M \oplus M \oplus \cdots \oplus M$ is Noetherian for any Noetherian module M.

Definition 8 A ring R is Noetherian if R is a Noetherian R-module.

Examples of Noetherian rings are fields, \mathbb{Z} , PIDs and (as we shall see momentarily) polynomial rings over fields. An example of a ring which is not Noetherian is the polynomial ring of infinitely many indeterminates $\mathbb{Z}[t_1, t_2, \ldots]$.

Proposition 9 A homomorphic image of a Noetherian ring is Noetherian.

Proof. Let $f : A \to B$ be a surjective ring homomorphism with A Noetherian. Then $B \simeq A/\ker f$ and the ideals of B are in 1-1 correspondence with the ideals of A containing ker f. Now A satisfies the ascending chain condition on its ideals and therefore so does $A/\ker f \simeq B$.

Proposition 10 Let R be a Noetherian ring. Then an R-module M is Noetherian if and only if M is finitely generated as an R-module.

Proof. If M is Noetherian then clearly M is finitely generated as a module. Conversely, soppose that $M = \sum_{i=1}^{k} Rm_i$ for some $m_i \in M$. Then M is a homomorphic image of the free R-module R^k with basis: Define the module homomorphism $f : R^k \to M$ by $f(r_1, \ldots, r_k) := \sum_i r_i m_i$. Since R and R^k are Noetherian modules so is $M \simeq R^k / \ker f$.

The main result of this section is

Theorem 11 (Hilbert's Basis Theorem) Let R be a Noetherian ring. Then the polynomial ring R[t] is Noetherian. Let $A \leq B$ be two rings. We say that B is finitely generated as A-algebra (or that B is finitely generated as a ring over A) if there exists elements $b_1, \ldots, b_k \in B$ such that $B = A[b_1, \ldots, b_k]$ meaning that B is the smallest ring containing A and all b_i . This is equivalent to the existence of a surjective ring homomorphism $f : A[t_1, \ldots, t_k] \to B$ which is the identity on A and $f(t_i) = b_i$ for each i.

Corollary 12 Let R be a Noetherian ring and suppose $S \ge R$ is a ring which is finitely generated as R-algebra. Then S is a Noetherian ring.

Proof. The above discussion shows that S is a homomorphic image of the polynomial ring $R[t_1, \ldots, t_k]$ and with Theorem 11 and induction on k we deduce that $R[t_1, \ldots, t_k]$ is a Noetherian ring. Therefore S is a Noetherian ring.

In particular this implies that the polynomial ring $F[t_1, \ldots, t_k]$ is a Noetherian ring for any field F. This has the following central application to algebraic geometry.

Corollary 13 Let $X \subseteq F[t_1, \ldots, t_k]$ be any subset. Then there is a finite subset $Y \subseteq X$ such that $\mathcal{V}(X) = \mathcal{V}(Y)$.

Proof. Let $I = \langle X \rangle$ be the ideal generated by X in $R = F[t_1, \ldots, t_k]$. Since R is a Noetherian ring the ideal I is finitely generated and hence $I = \langle Y \rangle$ for some finite subset Y of X. Then $\mathcal{V}(X) = \mathcal{V}(Y)$. \Box

Proof of Theorem 11.

It is enough to show that any ideal I of R[t] is finitely generated. If $I = \{0\}$ this is clear. Suppose I is not zero. Let M be the ideal of R generated by all leading coefficients of all non-zero polynomials in I. Then M is finitely generated ideal and hence there are some polynomials $p_1, \ldots, p_k \in I$ such that p_i has leading coefficient c_i and $M = \sum_i Rc_i$. Let $N = \max\{\deg p_i \mid 1 \leq i \leq k\}$ and let $K = I \cap (R \oplus Rt \oplus \cdots \oplus Rt^N)$. Note that K is an R-submodule of the Noetherian R-module R^N and hence K is finitely generated as an R-module, say by elements $a_1, \ldots, a_s \in K \subset I$. Let J be the ideal of R[t] generated by $a_1, \ldots, a_s, p_1, \ldots, p_k$. We claim that J = I. Clearly $J \leq I$ and it remains to prove the converse. Let $f \in I$ and argue by induction on deg f that $f \in J$. If deg $f \leq N$ then $f \in K = \sum_i Ra_i$ and so $f \in J$. Suppose that

deg f > N. Let $a \in M$ be the leading coefficient of f. We have $a = \sum_j r_j c_j$ for some $r_j \in R$. Consider the polynomial $g := f - \sum_j r_j t^{\deg f - \deg p_j} p_j$ and note that deg $g < \deg f$. Since $g \in I$ we can assume from the induction hypothesis that $g \in J$. Therefore $f \in J$. Hence I = J is finitely generated ideal of R[t]. Therefore R[t] is a Noetherian ring. \Box

3 The Nilradical

A prime ideal P of a ring is said to be minimal if P does not contain another prime ideal $Q \subset P$.

Theorem 14 Let R be a Noetherian ring. Then R has finitely many minimal prime ideals and every prime ideal contains a minimal prime ideal.

Proof. Let's say that an ideal *I* of *R* is good if $I \supseteq P_1 \cdots P_k$ for some prime ideals P_i , not necessarily distinct. We claim that all ideals of *R* are good. Otherwise let *X* be the set of bad ideals and since *R* is Noetherian there is a maximal element of *X*, call it *J*. Clearly *J* is not prime. So there exist elements *x*, *y* outside *J* such that $xy \in J$. Let S = J + Rx, T = J + Ry, we have $ST \subseteq J$ and both *S* and *T* are strictly larger than *J* and hence must be good ideals. Therefore $P_1 \cdots P_k \subseteq S, P'_1 \cdots P'_l \subseteq T$ for some prime ideals P_i, P'_i of *R*. But then $P_1 \cdots P_k P'_1 \cdots P'_l \subseteq TS \subseteq J$ and so *J* is good, contradiction. So all ideals of *R* are good an in particular $\{0\}$ is good and so $P_1 \cdots P_k = 0$ for some prime ideals P_i . Let *Y* be the set of minimal ideals from the set $\{P_1, \ldots, P_k\}$. We claim that *Y* is the set of all minimal prime ideals of *R*. Indeed if *I* is any prime ideal, then $P_1 \cdots P_k \subseteq I$ and so $P_i \subseteq I$ for some *i*, justifying our claim. This also proves the second statement of the theorem. \Box

Let I be any ideal of a Noetherian ring R. By appying the above theorem to the quotient ring R/I we deduce that there is a finite collection $\{P_1, \ldots, P_n\}$ of prime ideals P_i of R which are minimal subject to $I \subseteq P_i$. We will refer to $\{P_1, \ldots, P_n\}$ as the minimal primes of the ideal I.

An element $x \in R$ is nilpotent if $x^n = 0$ for some n. An ideal I is said to be nilpotent if $I^n = 0$ for some $n \in \mathbb{N}$.

The set $\{x \in R | x \text{ nilpotent}\}$ of all nilpotent elements of R is an ideal of R (exercise).

Definition 15 The nilradical of a ring R denoted by nilrad(R) is the set of all nilpotent elements of R.

The nilradical may not be nilpotent: consider the ideal generated by t_1, t_2, \ldots in the ring $\bigoplus_{k=1}^{\infty} \mathbb{R}[t_k]/(t_k)^k$. However

Proposition 16 Let I be an ideal of a ring R consisting of nilpotent elements (such ideal is called a nil ideal). Suppose that I is finitely generated as an ideal. Then I is nilpotent.

Proof. Let $x_i \in I$ such that $I = \langle x_1, \ldots, x_k \rangle = Rx_1 + Rx_2 + \cdots Rx_k$. Let $x_i^{n_i} = 0$ for some integers $n_i \in \mathbb{N}$ and take $m = n_1 + \cdots + n_k$. Now

$$I^n = (Rx_1 + Rx_2 + \dots + Rx_k)^n \subseteq \sum_{s_1 + \dots + s_k = n} Rx_1^{s_1} \cdots x_k^{s_k}$$

where the sum is over all tuples s_i subject to $\sum_{i=1}^k s_i = n$. We must have at least one j such that $s_j \ge n_j$ and then $x_j^{s_j} = 0$. Therefore the right hand side above is the zero ideal and so $I^n = 0$.

Corollary 17 The nilradical of a Noetherian ring is nilpotent.

There is another very useful characterization of the nilradical.

Theorem 18 (Krull's theorem) For any ring R, nilrad(R) is the intersection of all prime ideals of R.

Proof. If x is nilpotent and P is a prime ideal then $x^n = 0 \in P$ for some n and so $x \in P$. So nilrad $(R) \subseteq X := \cap \{P \mid P \text{ prime ideal of } R\}$. For the converse suppose that x is not nilpotent. Let $S = \{x^n \mid n \geq 0\}$, then S is a multiplicatively closed subset of R avoiding 0. By problem sheet 1 Q1 there is a prime ideal P such that $P \cap S = \emptyset$. So $x \notin X$. Thus $X \subseteq \operatorname{nilrad}(R)$ and so nilrad(R) = X.

Definition 19 Let I be an ideal of R. The radical of I is defined to be

$$\operatorname{rad}(I) := \{ x \in R \mid x^n \in I, \text{ for some } n \in \mathbb{N} \}.$$

So by definition $\operatorname{rad}(I)/I = \operatorname{nilrad}(R/I)$ from where we see by Theorem 18 the first part of the following.

Corollary 20 Let I be an ideal of a ring R. Then

(1) $\operatorname{rad}(I) = \cap \{P \mid P \text{ prime ideal of } R \text{ with } I \subseteq P\}$

(2) If R is Noetherian then $\operatorname{rad}(I) = P_1 \cap \cdots \cap P_k$ for some prime ideals P_i of R. There exists some $n \in \mathbb{N}$ such that $\operatorname{rad}(I)^n \subseteq I$.

Proof. It remains to prove (2). By considering R/I and applying Theorem 14 we deduce that there are finitely many prime ideals, say P_1, \ldots, P_k minimal subject to $I \subseteq P_i$ and every prime ideal Q above I contains some P_i . It is now clear that $r(I) = P_1 \cap \cdots \cap P_k$. The last part follows from Corollary 17 applied to the nil ideal r(I)/I of the Noetherian ring R/I.

3.1 Connection with algebraic sets

Recall the definitions of the maps \mathcal{V} and \mathcal{I} from the Introduction. The following Proposition is an easy exercise.

Proposition 21 Let I_j , j = 1, 2, ... be ideals of the polynomial ring $R = F[t_1, ..., t_k]$. Then

(1) $\mathcal{V}(\sum_{j} I_{j}) = \cap_{j} \mathcal{V}(I_{j}).$ (2) $\mathcal{V}(I_{1} \cap I_{2}) = \mathcal{V}(I_{1}I_{2}) = \mathcal{V}(I_{1}) \cup \mathcal{V}(I_{2}).$ (3) rad $\mathcal{I}(Z) = \mathcal{I}(Z)$ for any subset $Z \subset F^{k}$.

When studying algebraic sets it is natural first to express them as union of 'simpler' algebraic sets. For example the algebraic set $W = \mathcal{V}(t_1 t_2)$ can be written as $W = L_1 \cup L_2$, a union of the two lines $L_i = \mathcal{V}(t_i), i = 1, 2$. This leads us to consider algebraic sets which cannot be decomposed further and we make the following definition.

Definition 22 A non-empty algebraic set W is said to be irreducible if whenever $W = W_1 \cup W_2$ for some algebraic sets W_1, W_2 then $W_1 = W$ or $W_2 = W$.

Proposition 23 An algebraic set W is irreducible if and only if $\mathcal{I}(W)$ is a prime ideal.

Proof. Suppose $\mathcal{I}(W)$ is a prime ideal and $W = W_1 \cup W_2$ with each $W_i \neq W$. Then $\mathcal{I}(W_i)$ is strictly larger than $\mathcal{I}(W)$ and we can take $f_i \in \mathcal{I}(W_i) \setminus \mathcal{I}(W)$. Then the polynomial $f_1 f_2$ vanishes on both W_1 and W_2 hence it vanishes on W and so $f_1 f_2 \in \mathcal{I}(W)$. Thus $\mathcal{I}(W)$ is not a prime ideal, contradiction. Therefore W must be irreducible.

We leave the converse as an exercise in Problem sheet 2.

Theorem 24 Every algebraic set is a union of finitely many irreducible algebric sets.

Proof. Problem sheet 2.

Suppose W is an algebraic set and $W = V_1 \cup \cdots \cup V_n$ where V_i are irreducible algebraic sets and n is minimal possible. Then $V_i \not\subseteq V_j$ for any i, j otherwise we may omit V_i from the union. Now $\mathcal{I}(W) = \bigcap_{i=1}^n \mathcal{I}(V_i)$. If P is a prime ideal containing $\mathcal{I}(W)$ then P must contain at least one of the ideals $P_j := \mathcal{I}(V_i)$. It follows that P_1, \ldots, P_n are precisely the minimal primes of the ideal $\mathcal{I}(W)$. Since $V_i = \mathcal{V}(P_i)$ it follows that the irreducible sets V_i in the minimal decomposition $W = V_1 \cup \cdots \cup V_n$ are determined uniquely by W and we refer to them as the *irreducible components* of W.

It remains to determine the relationship between the algebraic set $W = \mathcal{V}(I)$ and the ideal $\mathcal{I}(W)$. This is the topic of the next section.

4 The Nullstellensatz

We start with a technical result.

Proposition 25 Let $A \subseteq B \subseteq C$ be three rings with A Noetherian. Suppose that C is finitely generated as an A-algebra and also that C is finitely generated as a B-module. Then B is finitely generated as A-algebra.

Proof. Suppose that $C = \sum_{i=1}^{n} By_i$ for some $y_i \in C$. Let x_1, \ldots, x_m generate C as A-algebra. We have

$$x_i = \sum_{j=1}^n b_{ij} y_j \quad (1 \le i \le m)$$

$$y_j y_k = \sum_{l=1}^n b_{jkl} y_l \quad (1 \le j, k \le n)$$

for some $b_{ij}, b_{jkl} \in B$. Let B_0 be the subring of B generated by A and all the elements b_{ij}, b_{jkl} . Then B_0 is finitely generated as A-algebra and hence by Theorem 11 B_0 is a Noetherian ring. We have $A \subseteq B_0 \subseteq B \subseteq C$. Let $M = B_0 + \sum_{i=1}^n B_0 y_i$. By the definition of B_0 it follows that $A \subseteq M$ and $x_i M \subseteq M$ for all $i = 1, \ldots, m$. Therefore C = M. So C is finitely generated as B_0 -module and in particular C is a Noetherian B_0 -module. Its submodule B is therefore also a Noetherian B_0 -module and hence it is finitely generated as a B_0 -module. In particular there are elements $l_s \in B$ such that $C = \sum_{s=1}^r B_0 l_i$. Then the set of all b_{ij}, b_{jkl}, l_s for all possible i, j, k, l, sgenerates B as an A-algebra. \Box

4.1 Field extensions

Let $F \subseteq E$ be two fields. By [E:F] we denote $\dim_F E$, the dimension of E as a vector space over F and we say that that the extension E/F is finite if [E:F] is finite. The following is mostly part A material.

Proposition 26 Let E/F be a field extension such that E = F(x) for some element $x \in E$ (meaning that E is the smallest field containing F and x). The following are equivalent

- (1) E/F is a finite extension.
- (2) x is algebraic over F.
- (3) E is generated by x as an F-algebra.
- (4) E is finitely generated as an F-algebra.

Proof. The equivalence of (1),(2) and (3) is part A material. Clearly(3) implies (4). It remains to prove that (4) implies (2).

Suppose that x is not algebraic but transcendental over F. Then E = F(x) is the field of rational functions in the variable x. Suppose E is generated as F-algebra by the elements $g_i = p_i(x)/q_i(x)$, i = 1, ..., k where $p_i, q_i \in F[x]$ are polynomials in x. Let $r(x) = \prod_{i=1}^k q_i$ and consider the element $a = 1/(xr(x) + 1) \in E$. Then

$$a = f(g_1, \ldots, g_k)$$

for some polynomial $f \in F[t_1, \ldots, t_k]$. By muliplying with appropriate power of r to clear the denominators on RHS we reach the equation $a = s(x)/r(x)^n$ for some $n \in \mathbb{N}$ and polynomial $s(x) \in F[x]$. Thus $r(x)^n = s(x)(xr(x) + 1)$ which is impossible since xr(x) + 1 is coprime to $r(x)^n$.

Theorem 27 (weak Nullstellensatz) Let $F \subseteq E$ be two fields such that E is finitely generated as an algebra over F. Then E/F is a finite extension.

Proof. Suppose $E = F[x_1, \ldots, x_k]$ and argue by induction on k. The case k = 1 is the above Proposition 26. Assuming the result is true for k - 1 consider the sequence of fields $F \subseteq F' \subseteq E$ where $F' = F(x_1)$. We have that E is finitely generated as F'-algebra by k - 1 elements and hence by the induction hypothesis E/F' is finite. So E is finitely generated as F'-module and by Proposition 25 F' is finitely generated as F-algebra. Now Proposition 26 gives that F'/F is finite and therefore [E:F] = [E:F'][F':F] is finite. \Box

Corollary 28 Let F be a field and let R be a finitely generated F-algebra. Let M be a maximal ideal of R. Then $\dim_F R/M$ is finite.

Proof. R/M is a field which is finitely generated as F-algebra.

The next corollary describes the maximal ideals of polynomial rings over algebraically closed fields. First we need some notation.

Let F be a field and let $R = F[t_1, \ldots, t_k]$ be a polynomial ring. Let \mathcal{M} denote the set of maximal ideals of R and define a map $\mu : F^k \to \mathcal{M}$ by

$$\mu(a_1, \dots, a_k) := \sum_{i=1}^k R(t_i - a_i) = \langle t_1 - a_1, \dots, t_k - a_k \rangle$$

It is easy to check that $\mu(a_1, \ldots, a_k) \in \mathcal{M}$ and that the map μ is injective.

Corollary 29 Assume that the field F is algebraically closed. Then μ is bijective.

Proof. It remains to show that μ is surjective. Let M be a maximal ideal of R. By Corollary 28 R/M is a finite field extension of F, and since F is algebraically closed, it follows that $R/M \simeq F$ and so $\dim_F R/M = 1$. This implies M + F = R. In particular for each t_i there exists $a_i \in F$ such that $t_i - a_i \in M$. Then $\mu(a_1, \ldots, a_k) \subseteq M$ and hence $M = \mu(a_1, \ldots, a_k)$.

Corollary 30 Let R be a polynomial ring over algebraically closed field F. Let I be an ideal of R. Then $\mathcal{V}(I) = \emptyset$ if and only if I = R. Moreover $\mathbf{a} \in F^k$ belongs to $\mathcal{V}(I)$ if and only if $I \subseteq \mu(\mathbf{a})$.

Proof. If R = I then $1 \in I$ and so $\mathcal{V}(I) = \emptyset$. Conversely if $I \neq R$ there is a maximal ideal $M \in \mathcal{M}$ such that $I \subseteq M$. By Corollary 29 $M = \mu(\mathbf{a})$ for some $\mathbf{a} \in F^k$. Notice that $\mathcal{I}\{\mathbf{a}\} = \mu(\mathbf{a})$. So if $f \in I$ then $f \in \mu(\mathbf{a})$ and hence $f(\mathbf{a}) = 0$. Thus $\mathbf{a} \in \mathcal{V}(I)$ and so $\mathcal{V}(I) \neq \emptyset$. The second part follows by the same argument. \Box

So the points of the algebraic set $\mathcal{V}(I)$ correspond to the maximal ideals of R which contain I.

It remains to identify $\mathcal{I}(\mathcal{V}(I))$.

Theorem 31 (The Nullstellensatz) Let F be an algebraically closed field and let $R = F[t_1, \ldots, t_k]$. Let I be an ideal of R. Then

$$\mathcal{I}(\mathcal{V}(I)) = \operatorname{rad}(I).$$

Proof. Let $W = \mathcal{V}(I)$. Let $f \in \operatorname{rad}(I)$ then $f^n \in I$ for some $n \in \mathbb{N}$ and so f^n is zero on W. Hence f vanishes on W and so $f \in \mathcal{I}(\mathcal{V}(I)$. Conversely suppose $f \in \mathcal{I}(\mathcal{V}(I))$. We want to prove that $f \in \operatorname{rad}(I)$. If f = 0 this is clear, so assume $f \neq 0$. Consider the polynomial ring $S := R[z] = F[t_1, \ldots, t_k, z]$ where we have added an extra indeterminate variable z. Let J be the ideal of S generated by I together with the polynomial zf - 1. Observe that $\mathcal{V}(J) = \emptyset$: if the tuple $(\mathbf{a}, y) \in F^{k+1}$ (with $\mathbf{a} \in F^k$) belongs to $\mathcal{V}(J)$ then $\mathbf{a} \in W$ but then $f(\mathbf{a}) = 0$ so zf - 1 = -1 is not zero. Hence by Corollary 30 we must have J = S. Therefore there are polynomials $g, g_1, \ldots, g_m \in S$ and $f_1, \ldots, f_m \in I$ such that

$$g(zf-1) + g_1f_1 + \dots + g_mf_m = 1$$

This is an identity of polynomials in variables t_1, \ldots, t_k, z . In particular it ramains true when we substitute z = 1/f. Then g_i become polynomials in t_1, \ldots, t_k and 1/f. Bringing everything under a common denominator f^n we reach

$$\frac{g_1'f_1 + \cdots + g_m'f_m}{f^n} = 1$$

for some $g'_i \in R$. This implies $f^n = \sum_{i=1}^m g'_i f_i \in I$ since all $f_i \in I$. Thus $f \in \operatorname{rad}(I)$ and the Theorem is proved. \Box

Corollary 32 Let F and R be as in Theorem 31 and let I be an ideal of R. Then rad(I) is an intersection of maximal ideals of R.

Proof. Let U be the intersection of all maximal ideals of R which contain I. Clearly $rad(I) \subseteq U$ (since rad(I) is the intersection of all prime ideals of R which contain I).

Suppose now $f \notin \operatorname{rad}(I)$. By Theorem 31 we have $f \notin \mathcal{I}(\mathcal{V}(I))$ and so there is some $\mathbf{a} \in \mathcal{V}(I)$ such that $f(\mathbf{a}) \neq 0$ and in particular $f \notin \mu(\mathbf{a})$. On the other hand $I \subseteq \mu(\mathbf{a})$ and so $\mu(\mathbf{a})$ is a maximal ideal of R which contains I. So $f \notin U$. Thus $U \subseteq \operatorname{rad}(I)$ and so we have equality $U = \operatorname{rad}(I)$. \Box

This leads us to the following definition.

Definition 33 The Jacobson radical J(R) of a ring R is defined to be the intersection of all maximal ideals of R.

Clearly nilrad $(R) \subseteq J(R)$.

Definition 34 A ring R is said to be a Jacobson ring if $J(R/I) = \operatorname{rad}(I)/I = \operatorname{nilrad}(R/I)$ for each ideal I of R. Equivalently R is a Jacobson ring if each prime ideal of R is an intersection of maximal ideals.

So in Corollary 32 we have proved that $F[t_1, \ldots, t_k]$ is a Jacobson ring whenever F is an algebraically closed field. In fact more is true: any finitely generated algebra over a field is a Jacobson ring. We will prove this later once we have developed a new tool: the notion of integral ring extensions.

5 The Cayley-Hamilton Theorem, Nakayama's lemma

Theorem 35 Let R be a ring and let M be a finitely generated R-module. Let I be an ideal of R and $\phi : M \to M$ be an endomorphism of M such that $\phi(M) \subseteq IM$. There exist $a_1, \ldots, a_n \in I$ such that the module homomorphism

$$\phi^n + a_1 \phi^{n-1} + \dots + a_n = 0$$

as a map on M.

Proof. Let $x_1, \ldots, x_n \in M$ be generators of M, so $M = \sum_{i=1}^n Rx_i$. There exist $c_{i,j} \in I$ such that $\phi(x_i) = \sum_{j=1}^n c_{ji}x_j$. Let $C = (c_{i,j})$ and consider C as a matrix in $M_n(R[t])$. Let $p = p(t) = \det(t \cdot \mathbf{I}_n - C)$ be the characteristic polynomial of C and note that $p(t) = t^n + a_1 t^{n-1} + \cdots + a_n$ where $a_i \in I$ since a_i is a polynomial in the coefficients $c_{i,j}$ of C. From the Cayley-Hamilton theorem in part A we have p(C) = 0 and hence $p(\phi)$ is the zero map on M because ϕ acts as C on M.

Corollary 36 (Nakayama's Lemma) Let M be a finitely generated R-module and let I be an ideal of R such that M = IM. Then there exists $x \in I$ such that (1 + x)M = 0.

Proof. Take $\phi = \text{Id}_M$ in Theorem 35. Then there exist $a_i \in I$ such that $(1 + a_1 + \cdots + a_n)M = 0$ and we can take $x = \sum_{i=1}^n a_i$.

The above corollary has an important special case (which is sometimes also stated as Nakayama's lemma).

Corollary 37 Let R be a ring and M be a finitely generated R-module such that M = JM, where J = J(R) is the Jacobson radical of R. Then $M = \{0\}$.

Proof. Problem sheet 3.

Corollary 38 Let M be a finitely generated R-module and let J = J(R). Let N be a submodule of M such that M = N + JM. Then M = N.

Proof. Apply Corollary 37 to the module M/N.

These results is particularly useful for local rings.

Definition 39 A ring R is a local ring if R has a unique maximal ideal.

It is clear that if R is a local ring with maximal ideal I then I = J(R) is the Jacobson radical of R. We have that the elements of $R \setminus I$ are the units of R. The last corollary then implies that in order to generate a Noetherian module M over a local ring R is is sufficient to generate the quotient M/IM. In turn M/IM is a vector space over the field R/I and the problem of generating M reduces to linear algebra in M/IM.

6 Localization

Now we describe a technique which often helps to simplify arguments and reduce them to the case of local rings. Let R be a domain, that is a ring without zero divisors. Let Y be a multiplicatively closed subset of R which contains 1 and such that $0 \notin Y$. Let E be the field of fractions of R.

Definition 40 We define

$$S := Y^{-1}R := \{ ry^{-1} \mid r \in R, \ y \in Y \} \subseteq E.$$

For an ideal I of R we define $e(I) := SI = \{xy^{-1} \mid x \in I, y \in Y\}.$

It is easy to check that $S = Y^{-1}R$ is a ring and that e(I) is an ideal of S.

For example when $R = \mathbb{Z}$ and $Y = \{2^k \mid k = 0, 1, 2...\}$ then $Y^{-1}R$ is the ring of rational numbers with denominators which are a power of 2. Now if $I = 3\mathbb{Z}$ then $e(I) = 3S = \{\frac{3n}{2^k} \mid n \in \mathbb{Z}, k = 0, 1, 2, ...\}$.

For an ideal J of S we define $c(J) := R \cap J$, this is an ideal of R, the *contraction* of the ideal J.

Let \mathcal{R} and \mathcal{S} denote the set of ideals of R and S respectively. We can regard $e: \mathcal{R} \to \mathcal{S}$ and $c: \mathcal{S} \to \mathcal{R}$ as maps between \mathcal{R} and \mathcal{S} . Let \mathcal{R}_c denote the set $\{J \cap R \mid J \in \mathcal{S}\}$, the image of the contraction map c.

Proposition 41

(1) The maps c and e are mutually inverse bijections between S and \mathcal{R}_c . Both c and e respect inclusion and intersection of ideals. In addition e respects sums of ideals.

(2) The prime ideals in R_c are precisely the prime ideals P of R such that $P \cap Y = \emptyset$.

(3) e maps prime ideals from \mathcal{R}_c to prime ideals of S, c maps prime ideals of S to prime ideals of R.

Proof. Part (1) is an easy exercise. For part (2), suppose P = c(J) is a contracted prime ideal of R. If $y \in P \cap Y$ then $y \in J$ but $y^{-1} \in S$ and so $1 \in J$, giving J = S and $P = R \cap S = R$ contradiction. So $P \cap Y = \emptyset$. Conversely if P is a prime ideal of R such that $P \cap Y = \emptyset$ then let J = e(P) and consider $c(J) = P \cap J$. Clearly $P \subseteq c(J)$. Suppose $x \in c(J)$, thus $x \in R$

and $x = py^{-1}$ for some $p \in P$ and $y \in Y$. Hence p = xy with $y \notin P$, hence $x \in P$ because P is prime. Therefore P = c(J) = ce(P) proving (2).

For part (3): If J is a prime ideal of S then $c(J) = J \cap R$ is a prime ideal of R.

Now suppose P is a prime ideal of R with $P \cap Y = \emptyset$. We want to show that $e(P) = SP = Y^{-1}P$ is a prime ideal of S. Suppose $r_1, r_2 \in R$, $y_1, y_2 \in Y$ with $(r_1y_1^{-1})(r_2y_2^{-1}) \in e(P)$. Hence $r_1r_2(y_1y_2)^{-1} = py^{-1}$ for some $p \in P, y \in Y$. This gives $y_1y_2p = yr_1r_2 \in P$ and then either $r_1 \in P$ or $r_2 \in P$ since P is prime and $y \notin P$. Hence either $r_1/y_1 \in e(P)$ or $r_2/e_2 \in e(P)$. Therefore e(P) is a prime ideal. \Box

Corollary 42 Suppose $Y = R \setminus P$ for some prime ideal P of R. Let $S := Y^{-1}R$. Then S has precisely one maximal ideal, namely e(P) = SP. The prime ideals of S correspond bijectively via c to the prime ideals of R contained in P.

Proof. Let M be a maximal ideal of S. Now M = ec(M) and $c(M) = R \cap M$ is a prime ideal of R disjoint from Y, hence $c(M) \subseteq P$. Thus $M = ec(M) \subseteq e(P)$ and by maximality M = e(P). So e(P) is the unique maximal ideal of S. The rest of the claims follow from Proposition 41 (2) and (3).

Corollary 43 If R is Noetherian then $S = Y^{-1}R$ is also Noetherian.

Proof. A strictly ascending chain of ideals in S contracts to a strictly ascending chain of ideals in \mathcal{R}_c . \Box

Definition 44 When P is a prime ideal of R and $Y = R \setminus P$ we write R_P for $Y^{-1}R$ and call this the localization of R at P. By Corollary 42 R_P is a local ring whose prime ideals correspond bijectively to the prime ideals of R contained in P.

For example when $R = \mathbb{Z}$ and $P = 2\mathbb{Z}$ then $\mathbb{Z}_{2\mathbb{Z}}$ is the ring of rational numbers with odd denominators which has a unique maximal ideal $2\mathbb{Z}_{2\mathbb{Z}}$.

Proposition 45 Let I and J be ideals in a domain R. Suppose that $IR_M \subseteq JR_M$ for each maximal ideal M of M. Then $I \subseteq J$.

Proof. Suppose for the sake of contradiction that there is some $a \in I \setminus J$ and let $L := \{x \in R \mid xa \subseteq J\}$. Then L is a proper ideal of R since $1 \notin L$ and so there is some maximal ideal M of R with $L \subseteq M$. Now $a \in IR_M \subseteq JR_M$ and so $a = xy^{-1}$ with $x \in J$ and $y \notin M$. But then $ay = x \in J$ and so $y \in L \subseteq M$, contradiction. Hence $I \subseteq J$. \Box

The above proposition is useful when we want to prove equality of two ideals I and J of a ring R: it is sufficient to show $IR_M = JR_M$ for each maximal ideal M and the problem reduces to working in the local ring R_M which is usually much easier to understand.

7 Integrality

Let $R \subseteq S$ be two rings.

Definition 46 An element $x \in S$ is said to be integral over R if x is the root of a monic polynomial with coefficients in R, that is

$$x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + a_{n} = 0 \tag{1}$$

for some $a_i \in R$.

The ring S is said to be integral over R, if every element of S is integral over R. We also say that $R \subseteq S$ is an integral extension.

Proposition 47 Let $R \subseteq S$ be an integral extension and suppose that S is a domain. Let I be a non-zero ideal of S. Then $I \cap R \neq \{0\}$.

Proof. Let $x \in I \setminus \{0\}$ and let x satisfy (1) with n minimal possible. We can write this as $xh(x) = -a_n$ where $h(x) = x^{n-1} + \cdots + a_{n-1}$. Then $a_n \neq 0$ because S is a domain and both x and h(x) are not zero. Since $x \in I$ we have $a_n \in I \cap R$. \Box

Proposition 48 Let $x \in S$. Then x is integral over R if and only if there is a finitely generated R-module $M \subseteq S$ such that $1 \in M$ and $xM \subseteq M$.

Proof. Suppose x is integral over R and satisfies (1). We can take $M = \sum_{j=0}^{n-1} x^j R$.

Conversely if M is a finitely generated module with $xM \subseteq M$ by Theorem 35 there is a monic polynomial $f(t) \in R[t]$ such that $f(x)M = \{0\}$. Since $1 \in M$ we see that f(x) = 0 and x is integral over R. \Box .

Definition 49 The integral closure of R in S is the set of all elements of S which are integral over R.

Corollary 50 Let C be the integral closure of R in S. Then C is a subring of S.

Proof. Let $x, y \in C$ and let n and m be the degrees of the monic polynomials with roots x and y respectively. We set $M := \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} x^i y^j R$. Then $1 \in M, xM \subseteq M, yM \subseteq M$ and so $(x + y)M \subseteq M$ and $xyM \subseteq M$. Proposition 48 now gives that x + y and $xy \in C$. \Box

Proposition 51 Let $R \subseteq S \subseteq T$ be three rings such that S is integral over R and T is integral over S. Then T is integral over R.

Proof. Let $x \in T$ and let $a_i \in S$ such that $x^n + a_1 x^{n-1} + \cdots + a_n = 0$. Let $S' := R[a_1, \ldots, a_n] \subseteq S$. Since each a_i is integral over R the argument of Proposition 48 gives that S' is a finitely generated R-module. Let B be a finite set of generators of S', so $S' = \sum_{b \in B} Ra$.

Now consider

$$M := S'[x] = \sum_{i=0}^{n-1} S' x^i = \sum_{i=0}^{n-1} \sum_{b \in B} Rbx^i.$$

We have $1 \in M$, $xM \subseteq M$ and M is generated by the finite set $\bigcup_{i=0}^{n-1} x^i B$ as an R-module. So by Proposition 48 x is integral over R. Therefore T is integral over R. \Box

When $R \subseteq S$ is an integral extension there is a close relationship between the prime ideals of S and the prime ideals of R.

Proposition 52 Let $R \subseteq S$ be an integral extension.

(a) If S is a field then R is a field.

(b) If R is a field and S is a domain then S is a field.

(c) Let P be a prime ideal of S and let $Q := R \cap P$. Then P is a maximal ideal of S if and only if Q is a maximal ideal of R.

Proof. (a) Let $x \in R \setminus \{0\}$ and let $x^{-1} \in S$ satisfy the equation

$$x^{-n} + a_1 x^{-n+1} + \dots + a_n = 0$$

with $a_i \in R$. This gives $x^{-1} = -(a_1 + a_2x + \cdots + a_nx^{n-1})$ and so $x^{-1} \in R$. (b) Let $x \in S \setminus \{0\}$ and let

$$x^{n} + a_{1}x^{n-1} + \dots + a_{n} = 0$$

with $a_i \in R$ and *n* minimal possible. Then $a_n \neq 0$ and we can rewrite the above equation as $xy = -a_n$ where $y = x^{n-1} + a_1 x^{n-2} + \cdots + a_{n-1} \in S$. Since *R* is a field the element a_n is invertible in *R* and thus $-ya_n^{-1}$ is an inverse for *x* in *S*. So *S* is a field.

(c) We have $R/Q = R/(P \cap R) \simeq (R+P)/P \subseteq S/P$. Since S is integral over R by reducing the equation (1) modulo P we deduce that S/P is integral extension of R/Q. Note that S/P is a domain since P is a prime ideal of S. Now by parts (a) and (b) S/P is a field if and only if R/Q is a field. \Box

Proposition 53 Let $R \subseteq S$ be an integral extension. Let Q be a prime ideal of R.

(a) There exists a prime ideal P of S such that $P \cap R = Q$.

(b) Suppose $P_1 \subseteq P_2$ are two prime ideals of S such that $P_1 \cap R = P_2 \cap R$. Then $P_1 = P_2$.

Proof. (a) Let $Y = R \setminus Q$ and note that Y is multiplicatively closed subset of R. Choose an ideal P of S maximal subject to the condition $P \cap Y = \emptyset$, such an ideal P exists by Zorn's Lemma. Then P is a prime ideal of S by Problem sheet 1. From the choice of P we have $R \cap P \subseteq Q$. Suppose there exists $x \in Q$ with $x \notin P$. Then P + Sx is an ideal strictly bigger than P and therefore there exists $z \in (P + Sx) \cap Y$. We can write z = p + sx where $p \in P, s \in S$. The element s is integral over R and therefore $s^n + a_1 s^{n-1} + \cdots + a_n = 0$ for some $a_i \in R$. This gives

$$(xs)^{n} + a_{1}x(xs)^{n-1} + \dots + a_{n}x^{n} = 0$$

We have $xs \equiv z \mod P$ and and therefore

$$z^n + a_1 x z^{n-1} + \dots + a_n x^n \in P \cap R \subseteq Q.$$

Since $x \in Q$ this implies $z^n \in Q$ but $z \notin Q$ and Q is a prime ideal of R, contradiction. Therefore $P \cap R = Q$.

(b) Let $Q := P_1 \cap R = P_2 \cap R$ and consider the integral extension $R/Q \subseteq S/P_1$. The ring S/P_1 is a domain with ideal P_2/P_1 such that $(P_2/P_1) \cap (R/Q) = Q/Q = \{0\}_{R/Q}$. By Proposition 47 we must have that P_2/P_1 is the zero ideal, hence $P_1 = P_2$. \Box

Theorem 54 Let $R \subseteq S$ be an integral extension and let $Q_1 < Q_2 < \cdots < Q_k$ be a chain of prime ideals of R. There exists a chain $P_1 < P_2 < \cdots < P_k$ of prime ideals of S such that $P_i \cap R = Q_i$ for $i = 1, \ldots, k$.

Proof. We use induction on k, the case of k = 1 being Proposition 53. For the inductive step it is sufficient to prove the following:

Given prime ideals $Q_1 \subseteq Q_2$ of R and a prime ideal P_1 of S with $P_1 \cap R = Q_1$ then there exists a prime ideal $P_2 \supseteq P_1$ such that $P_2 \cap R = Q_2$.

Let $\bar{R} = R/Q_1$, $\bar{S} = S/P_1$. Now $\bar{Q}_2 := Q_2/Q_1$ is a prime ideal of \bar{R} and \bar{S} is integral over \bar{R} . By Proposition 53 there is a prime ideal \bar{P}_2 of \bar{S} such that $\bar{P}_2 \cap \bar{R} = \bar{Q}_2$.

There is a prime ideal P_2 of S with $P_2 \supseteq P_1$ such that $\overline{P}_2 = P_2/P_1$ and we claim that $P_2 \cap R = Q_2$. From the choice of \overline{P}_2 we have $(P_2 \cap R) + P_1 = P_2 \cap (R + P_1) = Q_2 + P_1$. Taking intersection with R we obtain

$$P_2 \cap R = ((P_2 \cap R) + P_1) \cap R = (Q_2 + P_1) \cap R = Q_2.$$

This completes the induction step. \Box

Theorem 54 and Proposition 53 (b) together give the following.

Corollary 55 Let $R \subseteq S$ be an integral extension. A strictly increasing chain of prime ideals of S intersects R in a strictly increasing chain of prime ideals of R. Conversely any strictly increasing chain of prime ideals of R is the intersection of R with some strictly increasing chain of prime ideals of S.

8 Krull dimension

Let F be an algebraically closed field. We want to define a notion of dimension to every algebraic set, which generalizes the dimension of the vector space F^k .

Definition 56 Let $V \subseteq F^k$ be an irreducible algebraic set. The dimension $\dim V$ of V is the largest integer n such that there is a strictly increasing chain

$$\emptyset \neq V_n \subset V_{n-1} \subset \dots \subset V_0 = V \tag{2}$$

of irreducible algebraic sets V_i .

More generally when V is reducible we set $\dim V$ to be the largest dimension of an irreducible component of V.

For example if $V = {\mathbf{a}}$ is a single point in F^k then dim V = 0. We will prove later that dim V is always finite and in fact dim $V \leq k$ with equality if and only if $V = F^k$.

Let $P_i = \mathcal{I}(V_i)$ where V_i are the irreducible sets of (2). Then $P_0 \subset P_1 \subset \cdots \subset P_n$ is a strictly increasing chain of prime ideals of the polynomial ring $R = F[t_1, \ldots, t_k]$. This leads to the following definition.

Definition 57 Let R be a ring. The Krull dimension of R denoted by dim R is the largest n such that there is a chain

$$P_0 \subset P_1 \subset \dots \subset P_n \tag{3}$$

of prime ideals P_i of R. We set dim $R = \infty$ if there is no such integer n.

So we see that for an algebraic set $V \subseteq F^k$ we have dim $V = \dim R/\mathcal{I}(V)$ where $R = F[t_1, \ldots, t_k]$.

Corollary 55 now implies the following.

Proposition 58 Let $R \subseteq S$ be an integral extension. Then dim $R = \dim S$.

A word of warning: The dimension of a Noetherian ring does not have to be finite (an example is sketched in the 2015 Exam paper C2.3, Q3).

Definition 59 Let P be a prime ideal of a ring R. The height, ht(P) of P is defined to be the largest integer n such that there is chain

$$P_0 \subset \cdots \subset P_n = P$$

of prime ideals P_i terminating at P.

So dim R is the maximum of the heights of its prime ideals. It turns out that $ht(P) < \infty$ for every prime ideal P of a Noetherian ring R but we won't prove this here.

Our next aim is to prove that $\dim F[t_1, \ldots t_k] = k$. We will prove a more general result about the dimension of F- algebras. First we need more definitions.

Definition 60 Let $F \subseteq E$ be a field extension. Elements $x_1, \ldots x_k \in E$ are said to be algebraically dependent over F if there is a non-zero polynomial $f \in F[t_1, \ldots, t_k]$ such that $f(x_1, \ldots, x_k) = 0$.

We say that x_1, \ldots, x_k are algebraically independent (also said to be transcendental) over F if they are not algebraically dependent.

Definition 61 With $F \subseteq E$ as above the set $X := \{x_1, \ldots, x_n\}$ is a transcendence basis for E over F if X is a maximal algebraically independent subset of E.

The notion of transcendence basis is defined even for infinite sets but we won't need this here.

It is clear that if $E = F(c_1, \ldots, c_m)$ is finitely generated as a field over F then there is a finite subset $X \subseteq \{c_1, \ldots, c_m\}$ which is a transcendence basis for E/F. What needs proving is the analogue of fundamental property of bases of a vector space:

Proposition 62 Any two transcendence bases for E over F have the same size.

Proof. Let $X = \{x_1, \ldots, x_n\}$ and $Y = \{y_1, \ldots, y_m\}$ be two transcendence bases for E over F. Suppose that m > n.

By the maximality of X we have that E is algebraic over $L := F(x_1, \ldots, x_n)$ and therefore there is a non-zero polynomial $f \in F[t_1, \ldots, t_{n+1}]$, such that $f(x_1, \ldots, x_n, y_1) = 0$. We can further assume that f has as small degree as possible. Now $f \notin F[t_{n+1}]$, because y_1 is transcendental over F. Hence there is some t_j with $j \leq n$, say t_1 , which appears in a nonzero monomial of f. Rewriting f as a polynomial in t_1 with coefficients in $F[t_2, \ldots, t_{n+1}]$ gives that x_1 is algebraic over the subfield $L_1 := F(y_1, x_2, \ldots, x_n)$. Hence L is algebraic over L_1 and E is algebraic over L, therefore E is algebraic extension of L_1 .

Now y_2 is algebraic over L_1 and in the same way we deduce that there is some $x_j, j > 1$, for example x_2 such that x_2 is algebraic over $L_2 :=$ $F(y_1, y_2, x_3, \ldots, x_n)$ and as a consequence E is algebraic over L_2 . We can continue in the same way replacing each successive x_i with y_i until we reach the situation where E is algebraic over the subfield $L_n := F(y_1, \ldots, y_n)$. But then y_{n+1} is algebraic over L_n which is contradiction to Y being transcendental over F. So $n \ge m$ and by exchanging the roles of X and Y we get $m \ge n$ and therefore m = n. \Box

Definition 63 Let $F \leq E$ be a field extension. The transcendence degree tr.deg_FE of E over F is the cardinality of a transcendence basis for E over F.

More generally for a domain R which is a finitely generated algebra over a field F we set $\operatorname{tr.deg}_F R = \operatorname{tr.deg}_F E$, where E is the field of fractions of R.

The following result, known as Noether's Normalization Lemma is very useful in simplifying many proofs by reducing them to polynomial rings.

Lemma 64 (Noether's Normailization Lemma) Let $R = F[y_1, \ldots, y_n]$ be a finitely generated as an algebra over a subfield F. Assume that R is a domain. There exists an algebraically independent set $\{x_1, \ldots, x_k\} \subset R$ over F such that R is integral over $F[x_1, \ldots, x_k]$.

Proof. We will prove the lemma in the case when the field F is infinite.

We argue by induction on n, the case n = 0 being trivially true. Suppose the lemma is true for $R[y_1, \ldots, y_{n-1}]$ and we can find x_1, \ldots, x_s , $(s \le n-1)$, which are algebraically independent over F and such that $F[y_1, \ldots, y_{n-1}]$ is integral over $F[x_1, \ldots, x_s]$.

Suppose first that x_1, \ldots, x_s, y_n are still algebraically independent. Take $k = s + 1, x_{s+1} = y_n$. Now y_1, \ldots, y_n are integral over $F[x_1, \ldots, x_k]$ and we are done.

So we may assume that $f(x_1, \ldots, x_s, y_n) = 0$ for some nonzero polynomial $f \in F[t_1, \ldots, t_{s+1}]$ in s+1. Let g be the sum of all monomials of highest degree m in f. Since F is infinite there exist $c_i \in F \setminus \{0\}$ with $g(c_1, \ldots, c_{s+1}) \neq 0$. Since g is homogeneous we can consider $g(c_1, \ldots, c_{s+1})/c_{s+1}^m$ and by replacing each c_i by c_i/c_{s+1} we may assume $c_{s+1} = 1$. Let $b := g(c_1, \ldots, c_s, 1) \in F \setminus \{0\}$.

Let $z_i := x_i - c_i y_n$. We have

 $0 = f(x_1, \dots, x_s, y_n) = f(z_1 + c_1 y_n, \dots, z_s + c_s y_n, y_n) = by_n^m + h(z_1, \dots, z_s, y_n),$

where h is a polynomial whose degree in y_n is at most m-1. Dividing by $b \neq 0$ we conclude that y_n is integral over $R' := F[z_1, \ldots, z_s]$. Since $x_i \in R'[y_n]$ it follows that $F[x_1, \ldots, x_s]$ is integral over R' and hence R is integral over R'. The ring R' is generated as an F-algebra by s < n elements and so by the induction hypothesis there exist elements x'_1, \ldots, x'_k which are algebraically independent set over F and R' is integral over $F[x'_1, \ldots, x'_k]$. In turn R is integral over R' and by Proposition 51 R is integral over $F[x'_1, \ldots, x'_k]$. \Box

Proposition 65 Let R be a domain which is finitely generated as an algebra over a field F. Let $P \neq \{0\}$ be a prime ideal of R. Then $\operatorname{tr.deg}_F R > \operatorname{tr.deg}_F R/P$.

Proof. Let $k = \text{tr.deg}_F \overline{R}$ and let $\{\overline{x}_1, \ldots, \overline{x}_k\}$ be a transcendence basis of \overline{R} over F. Choose elements $x_i \in R$ such that $\overline{x}_i = x_i + P$ and note that $\{x_1, \ldots, x_k\}$ are algebraically independent over F. Hence $\text{tr.deg}_F R \geq k$. Suppose for the sake of contradiction that $\text{tr.deg}_F R = k$. This implies that R is algebraic over its subring $L := F[x_1, \ldots, x_k]$. Suppose $R = L[y_1, \ldots, y_n]$ for some elements $y_i \in R$. Note that since $\overline{x}_1, \ldots, \overline{x}_k$ are algebraically independent we have $L \cap P = \{0\}$. Let $Y = L \setminus \{0\}$ this is a multiplicatively closed subset of R such that $Y \cap P = \emptyset$. Consider the localization $S := Y^{-1}R$ and let T := e(P) = SP. By Proposition 41 we have that $T \neq \{0\}$ is a prime ideal of S. Let $E := Y^{-1}L = F(x_1, \ldots, x_k)$ be the field of fractions of L. Then $S = Y^{-1}R = E[y_1, \ldots, y_n]$. Each of the elements y_i is algebraic over E and so S is a finite field extension of E. This contradicts the fact that T = e(P) is a nonzero prime ideal of S.

Therefore $\operatorname{tr.deg}_F \overline{R} < \operatorname{tr.deg}_F R$ as claimed. \Box

Theorem 66 Let R be a domain which is finitely generated as an algebra over its subfield F. Then $\dim R = \operatorname{tr.deg}_F R$.

Proof. By Theorem 64 there exists an algebraically independent set $\{x_1, \ldots, x_k\} \subset R$ such that R is integral over its subring $K := R[x_1, \ldots, x_k]$. We have dim $R = \dim K$ and since the field of fractions of R is algebraic over $R(x_1, \ldots, x_k)$ we have $k = \operatorname{tr.deg}_F R$. Now consider the chain of ideals of K

$$\{0\} = P_0 \subset P_1 \subset \cdots \subset P_k,$$

where $P_i = \langle x_1, \ldots, x_i \rangle$. Since K is a polynomial ring over x_i , each P_i is a prime ideal of K and so dim $R = \dim K \ge k$.

Suppose for the sake of contradiction that dim R > k and let $\{0\} = P_0 \subset P_1 \subset \cdots P_{k+1}$ be a chain of k+2 non-zero ideals of R. Let $R_i := R/P_i$, this is a domain which is a finitely generated algebra over F and by Proposition 65 we have $\operatorname{tr.deg}_F R > \operatorname{tr.deg}_F R_1 > \cdots > \operatorname{tr.deg}_{k+1} \geq 0$. So $\operatorname{tr.deg}_R > k$, contradiction. Hence dim $R = k = \operatorname{tr.deg}_F R$. \Box

Corollary 67 Let F be a field, and $R = F[t_1, \ldots, t_k]$ be a polynomial ring. Then dim R = k.

Corollary 68 Let F be an algebraically closed field and let $V \subseteq F^k$ be an algebraic set. Then dim $V \leq k$ with equality if and only if $V = F^k$.

Proof. We have $\mathcal{I}(F^k) = \{0\}$ and so dim $F^k = \dim F[t_1, \dots, t_k] = k$.

Now suppose $V \subset F^k$ is a proper algebraic set of dimension l. We may replace V with an irreducible component and so without loss of generality may assume that V is irreducible. Let $P = \mathcal{I}(V)$. Since $V \neq F^k$ the prime ideal P is not zero. But then

$$l = \dim V = \dim F[t_1, \dots, t_k]/P < k$$

by Proposition 65. \Box

9 Noetherian rings of small dimension. Dedekind domains

We can apply the theory developed so far to study the Noetherian rings of dimension 0 and 1.

Theorem 69 Let R be a Noetherian ring of dimension 0. Then R/nilrad(R) is isomorphic to a finite direct product of fields.

Proof. By Proposition 14 R has finitely many minimal prime ideals, say P_1, \ldots, P_n and nilrad $R = \bigcap_{i=1}^n P_i$ is nilpotent. Let $Q_j := \bigcap_{i \neq i} P_i$. Since dim R = 0 each P_j is a maximal ideal of R and so $P_i \not\subseteq P_i$ for any $i \neq j$. Given j for each $i \neq j$ choose $a_i \in P_i \setminus P_j$ and then $\prod_{i \neq j} a_i$ belongs to Q_j but not to P_j . So $Q_j \not\subseteq P_j$ and hence $Q_j + P_j = R$. This holds for any j and by the Chinese remainder theorem

$$\frac{R}{\operatorname{nilrad} R} = \frac{R}{\bigcap_i P_i} \simeq \prod_{i=1}^n \frac{R}{P_i}.$$

Now each R/P_i is a field by the maximality of P_i . \Box

Conversely, a ring R such that nilradR is a nilpotent finitely generated ideal and R/nilradR is a direct product of fields, is a Noetherian ring of dimension 0. We leave the proof as an exercise.

We now move to Noetherian rings of dimension 1.

Definition 70 Let R be a domain. We say that R is integrally closed if R is integrally closed in its field of fractions E, that is any $x \in E$ which is integral over R must satisfy $x \in R$.

For example \mathbb{Z} and more generally any PID is an integrally closed domain, see the proof of Proposition 72 below.

Definition 71 A Noetherian domain R is said to be a Dedekind domain if dim R = 1 and R is integrally closed.

Examples of Dedekind domains are all principal ideal domains.

Proposition 72 Let R be a PID which is not a field. Then R is a Dedekind domain.

Proof. Any nonzero prime ideal P of R is maximal, thus a maximal chain of prime ideals is provided by $\{0\} \subset P$. Hence dim R = 1. It remains to show that R is integrally closed. Let K be the field of fractions of R and let $x = yz^{-1} \in K$ be integral over R where $y, z \in R$ and $z \neq 0$. We will prove that $x \in R$. We may assume that y and z are coprime elements of R. Suppose x satisfies the equaition (1) with $a_i \in R$. Multiply by z^n to clear denominators and reach $y^n + a_1y^{n-1}z + \cdots + a_nz^n = 0$. This gives that zdivides y^n and since y and z are assumed coprime it follows that z is a unit of R. Thus $x = yz^{-1} \in R$ and R is integrally closed. \Box A rich source of Dedekind domains is provided by Algebraic Number Theory.

Let E/\mathbb{Q} be a finite field extension of \mathbb{Q} and let R be the integral closure of \mathbb{Z} in E. Then R is a domain and since R is integral over \mathbb{Z} we have dim $R = \dim \mathbb{Z} = 1$. Moreover it can be proved that (R, +) is a finitely generated abelian group, thus R is a Noetherian \mathbb{Z} -module, hence a Noetherian R-module and hence R is a Noetherian ring. An important characterisation of Dedekind domains is that their ideals have unique factorization property.

Theorem 73 Let R be a Dedekind domain. Then any nonzero ideal I is a product of prime ideals. This factorization is unique up to reordering of the prime ideals.

Proof. Let $I \neq \{0\}$ be an ideal of R. Let P_1, \ldots, P_n be the minimal primes of I. Choose some P_i and consider the localization R_{P_i} . Then R_{P_i} is a local Noetherian domain of dimension 1. Since R is integrally closed so is R_{P_i} by Problem sheet 4. Now we can apply the last problem in Sheet 4 which gives that R_{P_i} is a PID in which every nonzero ideal is a power of its maximal ideal $e(P_i) = P_i R_{P_i}$. Hence there is an integer $n_i \in \mathbb{N}$ such that $e(I) = IR_{P_i} = e(P_i)^{n_i}$.

Let $J = P_1^{n_1} \cdots P_k^{n_k}$. Now observe that for $j \neq i$ we have $P_j R_{P_i} = R_{P_i}$ and so $JR_{P_i} = (P_i)^{n_i} R_{P_i} = IR_{P_i}$. On the other hand if Q is a non-zero prime ideal different from any of the P_i then $I \not\subseteq Q$ and so $IR_Q = R_Q = JR_Q$. Therefore $IR_M = JR_M$ for every maximal prime ideal M of R. By Proposition 45 we have I = J is a product of prime ideals. The same arguments shows that the integers n_i and the prime ideals P_i are uniquely determined by I. \Box

There is a converse to Theorem 73: A domain all of whose ideals are product of prime ideals is necessarily a Dedekind domain. We won't prove this here, instead we shall prove some other results.

Let I and J be two ideals of R. We say that I divides J if J = IT for some ideal T of R.

Proposition 74 Let R be a Dedekind domain and I and J two ideals of R. Then I divides J if and only if $J \subseteq I$.

Proof. If I divides J then clearly $J \subseteq I$. Conversely suppose $J \subseteq I$. We can write $J = \prod_{i=1}^{m} P_i^{n_i}$ and $I = \prod_{i=1}^{m} P_i^{s_i}$ for some integers $n_i, s_i \geq 0$ and prime ideals P_i .

Then $JR_{P_i} = P_i^{n_i}R_{P_i} \subseteq P_i^{s_i}R_{P_i} = IR_{P_i}$. Therefore $n_i \ge s_i$ for each *i*. Let $u_i = n_i - s_i$ and put $U := \prod_{i=1}^m P_i^{u_i}$. We have UI = J and so *I* divides *J*. \Box

Proposition 75 Let R be a Dedekind domain. Then every ideal of R can be generated by at most 2 elements.

Proof. Let $a \in I \setminus \{0\}$ and let J = Ra. We can factorize $J = \prod_{i=1}^{m} P_i^{s_i}$ for some prime ideals P_i and $s_i \in \mathbb{N}$. Since $J \subseteq I$ we must have $I = \prod_{i=1}^{m} P_i^{n_i}$ for some integers $0 \leq n_i \leq s_i$.

We have $I/J \simeq \prod_{i=1}^{m} P_i^{n_i}/P_i^{s_i}$ by the Chinese Remainder theorem. Let us choose $b_i \in P_i \setminus P_i^2$. This gives $Rb_i^{n_i} + P_i^{s_i} = P_i^{n_i}$ and so each $P_i^{n_i}/P_i^{s_i}$ is a principal ideal in $R/P_i^{s_i}$. Hence I/J is a principal ideal generated say by b + J in the ring R/J. Then $I = Rb + J = \langle a, b \rangle$. \Box

9.1 Fractional ideals and the ideal class group

We know that a PID is a Dedekind domain, but not every Dedekind domain R is a PID. How can we measure the failure of R to be a PID?

Definition 76 Let R be a Dedekind domain with field of fractions K. A fractional ideal of K is a subset of the form αI where $\alpha \in K \setminus \{0\}$ and I is a nonzero ideal of R. Denote by \mathcal{F} the set of all fractional ideals of K.

It is clear that if αI and βJ are fractional ideals of K then so is their product $\alpha\beta IJ$. The fractional ideal R plays the role of identity since $\alpha I \cdot R = \alpha I$ for each $\alpha I \in \mathcal{F}$. We now show that every fractional ideal has an inverse, thus making \mathcal{F} into abelian group.

Theorem 77 Let $L \in \mathcal{F}$ be a fractional ideal of K. Then L has an inverse L^{-1} , namely a fractional ideal $L^{-1} \in \mathcal{F}$ such that $LL^{-1} = R$.

Proof. Suppose $L = \alpha I$ for an ideal I of R and nonzero $\alpha \in K$. Choose any nonzero element $x \in I$. Since $Rx \subseteq I$ by Proposition 74 we must have Rx = IJ for some ideal J of R. Define $L^{-1} := \alpha^{-1}x^{-1}J$. Then $L^{-1}L = \alpha^{-1}\alpha x^{-1}IJ = x^{-1}IJ = x^{-1}xR = R$. \Box

This shows that \mathcal{F} is an abelian group under multiplication. We have the subgroup of principal ideals $\mathcal{P} := \{\alpha R \mid \alpha \in K \setminus \{0\}\}$ and so we can define

Definition 78 The ideal class group of a Dedekind domain is the quotient $C := \mathcal{F}/\mathcal{P}$ of fractional ideals modulo principal ideals.

Thus R is a PID if and only if $C = \{0\}$. One of the major results in Algebraic number theory is that |C| is finite when R is a ring of integers. The proof relies on geometric arguments specific to rings of integers, in particular their realization as a lattice in Euclidean space and lies outside the scope of this course.